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high levels of NET formation when 
compared with the Para cells from 
healthy patients (Fig. 3B).

Discussion
The present study characterizes for 
the first time oral neutrophil subsets 
specific to health and chronic inflam-
mation of the oral mucosa. We find 
that oral neutrophils from CP patients 
are in a proinflammatory activation 
state when compared with healthy 
oral neutrophils, as determined by 
elevated degranulation, phagocytosis, 
ROS production, and NETosis, as 
well as a characteristic signature of 
cell surface markers of activation 
(Fig. 4). We thus demonstrate an 
intermediate or parainflammatory 
state of oral neutrophils in health.

Neutrophils are important primary 
innate immune responders that migrate 
from the circulation to sites of inflam-
mation in the tissue. Neutrophils con-
tribute to periodontal tissue homeostasis 
through microbial surveillance and 
direct modulation of the host tissue 
response (Moutsopoulos et al. 2014); 
however, pathologic neutrophil responses 
can result in tissue damage (Kantarci 
et al. 2003; Amulic et al. 2012). While 
multiple circulating neutrophil sub-
types are known (Tsuda et al. 2004; 
Cloke et al. 2013; Fu et al. 2014; 
Sagiv et al. 2015), to our knowledge, 
diversity of neutrophil populations in 
tissue has not been studied, nor is 
there an understanding of how neutro-
phils maintain tissue homeostasis in 
the presence of commensal bacteria.

Phenotype of Para- and 
Proinflammatory Neutrophils

CD markers and their surface expres-
sion levels can be used for 3 main 
purposes: 1) to label/define a specific 
population of interest, 2) as markers 
of functionality, or 3) to gauge the 
state of activation of a particular function (van Eeden et al. 
1999; Elghetany 2002). Here we identified separate neutrophil 
populations with unique phenotypes in health and disease 
using custom CD marker panels, and we compared the func-
tional activity of these populations. We found CD markers 
indicative of cell activation to be expressed at much higher 

levels on oral neutrophils in CP as compared with healthy oral 
neutrophils, constituting a multiparameter CD marker signa-
ture that can differentiate between para- and proinflammatory 
tissue neutrophil populations based on activation state. The 
markers that were upregulated on CP oral neutrophils fall into 
3 categories:

Figure 3.  Proinflammatory oral neutrophil populations have elevated neutrophil extracellular trap 
formation and increased reactive oxygen species production as compared with parainflammatory 
neutrophils. (A) Oral neutrophils from healthy controls and chronic periodontitis (CP) patients 
were labeled with dihydrorhodamine and treated with phorbol 12-myristate 13-acetate (+PMA) 
or left untreated (–PMA) at 37 °C for 15 min. Representative histograms showing levels of the 
dihydrorhodamine oxidation product, rhodamine 123, on Para1, Para2, and proinflammatory (Pro) 
neutrophil populations are shown. Fluorescence minus one (FMO) controls are indicated. At least 2 
× 104 events were acquired in 3 independent experiments. Bar graphs show basal mean geometric 
mean fluorescence intensities (MFIs) of rhodamine 123 signal and the fold increase in geometric MFI 
in response to PMA stimulation for each oral neutrophil population. *P < 0.05, n = 3. (B) Fixed oral 
neutrophils were labeled with H3Cit, myeloperoxidase (MPO), and CD18 antibodies and analyzed 
by flow cytometry. Doublets were excluded, and neutrophils were gated according to expression of 
CD18. Representative histograms of H3Cit and MPO expression on Para1, Para2, and Pro neutrophil 
populations are shown. FMO controls are indicated. At least 2 × 104 events were acquired in 3 
independent experiments. Bar graphs show mean geometric MFIs for H3Cit and MPO for each oral 
neutrophil population ± SEM. *P < 0.05, **P < 0.01, n = 7.

 at International Association for Dental Research on June 6, 2016 For personal use only. No other uses without permission.jdr.sagepub.comDownloaded from 

© International & American Associations for Dental Research 2016



6	 Journal of Dental Research ﻿

Figure 4.  Model of parainflammatory and proinflammatory (Pro) neutrophil phenotypes in health and disease. Parainflammatory neutrophil subtypes 
are present in periodontal health, while Pro neutrophils occur in chronic periodontitis (CP). The 2 parainflammatory populations (Para1 and Para2) in 
health differ per cluster of differentiation (CD) marker expression and functional activity. Para2 oral neutrophils produce more reactive oxygen species 
and neutrophil extracellular traps as compared with Para1 populations. In addition to elevated neutrophil recruitment during CP, Pro neutrophils are 
in a heightened inflammatory state based on high expression of CD markers of activation, elevated production of reactive oxygen species, and more 
neutrophil extracellular trap (NET) formation when compared with both parainflammatory oral neutrophils.

1)	 markers of activation/degranulation—CD10 (Kuijpers 
et al. 1991), CD63 (Cham et al. 1994; Kobuch et al. 
2015), CD64 (Hoffmann 2009; Streimish et al. 2012), 
and CD66a (Skubitz et al. 1996);

2)	 adhesion receptors—CD11b and CD18; and
3)	 complement inhibitor—CD55 (Christmas et al. 2006).

The proinflammatory phenotype of CP oral neutrophils was 
confirmed by elevated degranulation, phagocytosis, ROS pro-
duction, and NETosis.

Interestingly, we observed 2 different populations of oral 
neutrophils in health. The Para1 and Para2 populations differed 
according to their size and granularity profile, expression of 
specific CD markers, production of ROS, and NET formation. 
The Para1 oral neutrophil phenotype, which is present only in 
health, has an FSC-A and SSC-A profile that is similar to naïve 
blood neutrophils, and these cells are in a lower state of activa-
tion relative to the Para2 oral neutrophils, based on the relative 
expression levels of 4 CD markers. Compared with the Para1 
population, Para2 oral neutrophils had elevated expression of 2 
markers of activation (CD55 and CD63) and reduced expres-
sion of the inhibitory receptor, CD170 (Avril et al. 2005), and 
the low-affinity Fc receptor, CD16. A drop in CD16 is likely a 
consequence of internalization as a result of phagocytosis and 
therefore is consistent with elevated phagocytic activity of the 
Para2 population compared with the Para1 population. 
Functionality, as determined by ROS production and NET for-
mation, was also reduced in the Para1 neutrophils versus the 
Para2 neutrophils. We surmise that the Para2 neutrophils may 
be the front-line neutrophils within the healthy tissue that inter-
act with the commensal biofilm or that they are coming from 

pockets with increased biofilm load, resulting in an increased 
activation state that is still below the maximal activation state 
of the proinflammatory neutrophil population observed in CP. 
Similarly, Para1 neutrophils—which also show upregulation of 
activation markers compared with blood but have restrained 
activation as compared with Para2 neutrophils—could be oral 
neutrophils that are in a primed state.

In contrast to health, there is only 1 population of CP oral 
neutrophils, which have a similar FSC-A/SSC-A profile to 
Para2 neutrophils but are more activated than either of the para-
inflammatory populations based on ROS production, NET for-
mation, and expression of CD markers of activation. This 
suggests that periodontal tissue neutrophils lie on a spectrum of 
increasing activation: Para1 < Para2 < Pro. Based on the fact 
that the Para1 and Para2 populations occur in equal proportions 
and were absent in CP, it is possible that the balance between 
the 2 contributes to the maintenance of tissue health in the pres-
ence of commensal microorganisms. Another possibility is that 
Para2 neutrophils come from sites of undetected subclinical 
inflammation in the mouth. While CD16 and CD170 expression 
are reduced in Para2 populations versus Para1, levels of these 2 
markers remain high on proinflammatory neutrophils in CP. It 
is unclear why CD16 and CD170 expression remains high on 
the CP oral neutrophils, since this would predict that these cells 
are not fully activated. It is possible that periodontal pathogens 
may be involved in the upregulation of these markers as part of 
their immune-modulatory actions, causing suppression of cer-
tain aspects of neutrophil function.

Reduced SSC-A of Para2 and Pro neutrophils, relative to the 
Para1 population, are consistent with increased degranulation in 
these populations; however, nuclear morphologic changes, 
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including those associated with NETosis, might also alter the 
spectral properties of the cells. Upregulation of CD markers 
associated with granules confirms that healthy and CP oral neu-
trophil populations have undergone degranulation relative to 
blood neutrophils (Borregaard and Cowland 1997). Furthermore, 
a relative increase in degranulation markers on oral neutrophils 
in CP, as compared with healthy oral neutrophils, is consistent 
with increased degranulation observed by electron microscopy 
and suggests that reduced SSC-A is at least partly due to 
increased degranulation in these populations.

In CP there is a shift from 2 parainflammatory populations 
to 1 proinflammatory neutrophil phenotype in response to the 
dysbiotic microenvironment instigated by pathogenic microbes. 
This conversion of parainflammatory neutrophils into proin-
flammatory neutrophils is likely to be a key aspect of patho-
genesis in periodontal disease. Further research will be 
necessary to elucidate the functional interplay between the 2 
parainflammatory subtypes. Furthermore, experimental mod-
els of gingivitis will be useful to better understand the transi-
tion from Para1 to Para2 to Pro neutrophils.

The Neutrophil Spectrum

Inflammation is an immunologic response to noxious microen-
vironmental stimuli, produced in response to dysbiotic events 
such as infection or tissue injury. Inflammation can be thought 
of as the extreme end of a spectrum of tissue states that ranges 
from homeostasis in the basal state to parainflammation in the 
stressed tissue to a full-fledged inflammatory state in damaged 
or infected tissue. In the healthy oral cavity, there is a constant 
low-grade microbiome-related stress and a constant influx of 
neutrophils; however, we show that these neutrophils are in an 
intermediate or parainflammatory state and have not been acti-
vated to their full potential. This is supported by studies com-
paring periodontal tissues in aged germ-free and normal 
specific pathogen–free mice, showing that the commensal bio-
film and normal immunosurveillance do lead to alveolar bone 
loss over time (Hajishengallis et al. 2011; Irie et al. 2014). 
Neutrophils are classically thought to be in either a resting or 
activated state; however, we have demonstrated that they actu-
ally exist in 4 states: a resting basal state in blood, 2 parain-
flammatory states in the healthy oral cavity, and a fully 
activated proinflammatory state in the diseased oral cavity. 
Although innate differences between neutrophil subsets are 
possible, we believe that the oral neutrophil subsets arise in 
response to localized inflammatory cues within the tissue and 
that similar changes in tissue neutrophils might also occur in other 
inflammatory diseases, such as arthritis and colitis. In addition 
to serving as possible diagnostic and treatment-monitoring 
biomarkers, oral neutrophil subtypes could serve as a tool to 
study the role of neutrophils in maintaining health at the muco-
sal biofilm interface and to better understand the role of neutro-
phils in chronic inflammatory diseases.
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